
Inr. J. Heat Mass ??onsfer. Vol. 14, pp. 573-585. Pergamon Press 1971. Printed in Great Britain 

NONISOTROPIC TURBULENT STRESS DISTRIBUTION 

IN SWIRLING FLOWS FROM MEAN VALUE 

DISTRIBUTIONS 

D. G. LILLEY and N. A. CHIGIER 

Department of Fuel Technology and Chemical Engineering, University of Sheffield, Sheffield, England 

(Received 21 April 1970 and in revisedform 10 July 1970) 

Abstract--Prediction of time-mean velocity and pressure in isothermal turbulent flows can be made 
provided the turbulent stress tensor r is specified. Isotropic turbulence has generally been assumed in the 
past with the constitutive equation r = 2pA, where p is an effective viscosity and A is the mean flow rate 
of deformation tensor. A method is presented here which allows the distributions of pLrr and prr the two 
significant effective viscosity components in a nonrecirculating swirling flow, to be determined from mean 
value distributions of ur and ng, the mean axial and swirl velocities. Calculations show that the turbulent 
stress distribution is nonisotropic and that bz and pie are functions of degree of swirl and position in the 
flowfield. It is shown that the assumption of an isotropic uniform mixing length parameter distribution is 

quite feasible for weak swirl but is progressively less valid as the degree of swirl increases. 
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NOMENCLATURE 

distance to apparent origin of jet ; 
substantial time derivative ; 
diameter of nozzle ; 
body force per unit volume ; 
mixing length ; 
number of points across jet ; 
point in flowfield ; 
time-mean pressure ; 
radial coordinate ; 
swirl number = angular momentum 
flux/axial momentum flux x nozzle 
radius ; 
time ; 
time-mean axial velocity ; 
time-mean velocity ; 
axial coordinate. 

mixing length parameter ; 
turbulent viscosity ; 
kinematic viscosity ; 
nondimensional radial coordinate 
= r/(zi a); 
time-mean density ; 
turbulent stress tensor ; 
vector differential operator. 

Subscripts 
o, 
m, 

max, 

Z, 6 8, 

rz etc., 

Greek symbols 

value at orifice of jet ; 
maximum value at a particular axial 
station ; 
position where vZIUm = 0.01; 
components of vector in z, I, 0 direc- 
tions ; 
rz-component of second-order tensor 
etc. 

A, mean flow rate of deformation tensor ; Superscripts 
6r, 6z, small distances in r- and z-directions ;+ e, effective value ; 

; 
small quantity ; 4 laminar (molecular) value ; 
polar coordinate ; I 

9 fluctuating component. 
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INTRODUCTION 

IT IS well-known that the time-dependent basic 
stress equations of motion hold for both 
laminar and turbulent flows. Substitution of a 
Newtonian constitutive equation, together with 
assumptions of constant density and viscosity, 
leads to the usual form of the Navier-Stokes 
equations. For a turbulent flow, complete time- 
dependent solution of these equations would 
trace the entire fluctuating motion and provide 
a convenient means of testing simplified models 
of turbulence. Such detailed study of turbulence 
is beyond present computer capability [l]. 
But, if only the gross effects of turbulence on the 
time-mean flow are of interest and the detailed 
structure of the turbulence is of no concern, a 
remarkable simplification is possible. For time- 
averaging of the Navier-Stokes equations yields 
equations (called Reynolds equations) of the 
same form for the mean variables, provided the 
stress tensor is augmented by the addition of a 
symmetric turbulent (Reynolds) stress tensor z 
[2]. In fully turbulent flow this is considerably 
greater than the molecular viscous stress tensor 
which is therefore usually omitted. A difficulty 
now is that the equations do not form a closed 
set, the six different unknown components of r 
being correlations of velocity fluctuation com- 
ponents. 

By analogy with an incompressible Newtonian 
fluid a constitutive equation t = 2pA is generally 
assumed with a variable effective viscosity p [3]. 
In the past isotropic turbulence has generally 
been assumed and the same p has been used for 
each of the components of this equation. Various 
hypotheses have been suggested and used in the 
past for calculating this only outstanding un- 
known 11 prior to solving the Reynolds equations. 
Each has been suitable for a particular flow 
configuration with certain empirical constants. 
The more recent hypotheses have evolved in 
attempts towards universality. The names of 
Prandtl, Reichardt, Kolmogorov, Rot@ Town- 
send, Bradshaw, Harlow, Kovasney and Spald- 
ing are noted and some of their ‘models of 
turbulence have been summarized by Spalding 

[4]. Several solution procedures are now avail- 
able for general and boundary layer flows, for 
example Spalding’s Elliptic [S] and Parabolic 
[6] numerical methods. Many of the procedures 
discussed at the AFOSR-IFP-Stanford Con- 
ference [7] are in principle extendable to predict 
the properties of weakly swirling flows. 

The spatial distributions of effective viscosities 
are essential for these prediction procedures 
based on the Reynolds equations. IJp to now 
they have been unknown and the present investi- 
gation was undertaken in order to seek out a 
pattern which would allow general distribution 
functions of effective viscosities to be formulated 
and allow discrimination between turbulence 
hypotheses. 

For a nonswirling free jet with boundary layer 
assumptions only one component zIz of t is 
significant and a simple turbulence hypothesis 
of the Prandtl mixing length type is sufficient 
for good predictions to be made [8]. However, 
for a swirling jet, again with boundary layer 
assumptions, two components z,, and zre are 
significant, [9, lo]. The more general case, for 
example a strongly swirling jet with recirculation 
where boundary layer assumptions cannot be 
invoked, requires all nine components (six 
different) of z to be specified [5]. Little informa- 
tion is available at present about the validity of 
the boundary layer assumptions for a given 
degree of swirl S, the relative order of magnitude 
of the components of t or a hypothesis which 
would be valid for these components. For a given 
degree of swirl this paper is concerned with 

(i) calculation of the relative order of magni- 
tude of terms in the Reynolds equations 
for steady state isothermal axisymmetric 
flow and determination of the validity of 
approximations to them, 

(ii) giving a direct evaluation of the distribu- 
tions of plz and P,~, associated mixing 
lengths and Reynolds stress components 
using only experimental mean data of 
v, and v,, and 

(iii) deriving an extension of Prandtl’s (1925) 
mixing length hypothesis [ 1 l] appropriate 
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to swirling flows of the boundary layer 

type. 
The work presented here forms an extension of 

Hinze and Hegge Zijnen’s work [12] on a non- 
swirling jet to the case of a swirling jet. It is an in- 
termediate step in developing a complete turbu- 
lence theory between using a well-known simple 
theory {for example Prandtl’s mixing length 
theory [l l]), and using general theories with at 
present many unknown universal constants (for 
example Bradshaw’s energy-stress theory [13] 
and Spalding’s energy-length theory [S]). 

The similarity with Hinze and Hegge Zijnen’s 
work is that the starting point is the experi- 
mentally observed mean values ~rou~out the 
ffowfield. They used a separation of variables’ 
technique and worked in the fully developed 
similarity region and so followed an analytical 
path. Inherent in their approach was the hyper- 
bolic decay of ma~um mean axial velocity, a 
phenomenon not observed in the swirling jet. 
In order to allow departure from similarity and 
the consequent nonhyperbolic decay of maxi- 
mum mean axial velocity a more general method 
has been developed which is applicable to 
swirling systems. 

In systems with high levels of turbulence, 
there is difficulty in obtaining accurate turbu- 
lence measurements in comparison to the relative 
ease of measuring mean velocities. The new 
method described in this paper utilizes only 
axial and swirl velocity measurements, yet 
allows information on shear stress distributions 
to be determined. In many engineering systems 
an indication as to the relative order of magni- 
tude of these quantities is sufficient in making 
decisions on the merits of one mixing system over 
another. For example, when considering the 
mixing in a combustion chamber, it has been 
found that maximum intensities of combustion 
can be achieved by injecting fuel in regions ofhigh 
shear airflow [14]. On the basis of the method 
set out here many previous studies in which mean 
values have been measured can be reevaluated 
so as to provide additional information on shear 
stress distributions. 

ANALYSIS 

Basic equations 
The basic vector-tensor stress equations of 

conversation of mass and moments are [3] 

g+p(v.l+o 
DV 

PDt 
-=pF-Vp+V.z”. (2) 

In a turbulent flow the expression for the total 
stress z” is 

te=r’$r (3) 

but the molecular stress tensor is usually 
omitted in fully turbulent free flows since 

rl g t. (4) 

Assuming incompressibility it may be shown 
that z is related to the correlations u’zl’ of tur- 
bulent velocity fluctuation components u’ by 

r=_pa’o’ (5) 

The continuity and momenta equations do 
not form a closed set since z is not known, yield- 
ing an excess of six unknown quantities over 
equations. Prediction of time-mean velocity 
and pressure in turbulent flows can be made. pro- 
vided that r is specified (as discussed in the 
Introduction) in terms of mean velocity and 
pressure (see, for example, Prandtl [ll]), or in 
terms of further unknowns with correspondingly 
further equations (see, for example, Bradshaw 
[13], Spalding [5] or Harlow [lS]). By analogy 
with a viscous Newtonian fluid, a constitutive 
stress-strain relation of the form 

z = 2pA (61 

has in the past generally been used (see, for 
example, Spalding [S]). The contribution of the 
turbulence energy to the normal components 
of z (see, for example, Hirt [ 11) has been neglected 
for simplicity, for in the subsequent analysis 
interest is restricted to shear stress components. 
Isotropic turbulence has generally been assumed 
in the sense that the same p has been used for all 
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components of this equation. A nonisotropic 
turbulence hypothesis does not insist on this 
and separate components of ,U are calculated 
independently. The subsequent sections of this 
paper are devoted to proving nonisotropic 
turbulence in isothermal swirling flows. 

Considering now the quasi-steady turbulent 
equation system in a cylindrical polar coordinate 
system (z,r,B), assuming axisymmetry (d/a@ = 0) 
and no external force (F = 0) the basic equations 
become 

Approximations to equations 
The boundary layer approximations, as usu- 

ally applied to a weakly swirling flow, are well- 
known. They are derived from the basic equa- 
tions by assuming 

The continuity equation then gives u, e O(E) 
and the approximate order of magnitude of all 
the terms in the equations can be calculated in 
terms of (for a laminar flow) E and v (see Loit- 
syanskii [9], Gartshore [16]) or (for a turbulent 

I flow) E and u U, a typical Reynolds stress com- 
ponent divided by constant density, assuming 
v: fi tj ’ - I_& * O(c) (see Loitsyanskii [9], Hall r 

[lo]). The previous equation system would take 
the form 

(13) 

The question remains as to the validity of this 
approximate system of equations for higher 
degrees of swirl. Recent hot-wire anemometer 
measurements of Reynolds stress components 
in swirling flows have been made by Allen [17], 
for swirl numbers S up to 0.6 and at axial 
distances downstream of up to four orifice 
diameters. They indicate that the omitted stress 
terms are certainly smaller than the retained 
terms, except for his higher degrees of swirl in 
the proximity of the orifice. The neglected inertia 
terms in the r-equation are qualified by the 
authors from mean velocity measurements by 
Allen [17], and Chigier and Chervinsky [18]. 

Alternatively these equations may be assumed 
to hold at all positions in the flowfield without 
recirculation and for all degrees of swirl less 
than 06. Then in the subsequent analysis, 
when mean values are used for the inertia and 
pressure terms, distributions of r,, and z,d are 
deduced. Any extension of a turbulence hypo- 
thesis to swirling flows deduced from these 
distributions will have a favourable property. 
For, if it is used to predict an unknown non- 
recirculating swirling flowfield, boundary layer 
equations will be sufficient in that analysis. 

Calculation procedure 
Assume now that detailed measurements of 

time-mean axial and swirl velocities and static 
pressure have been made with sufficient accuracy 
for curves to be fitted through the experimental 
points. The set of equations with empirical 
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constants describing the mean velocity and 
pressure fields for different degrees of swirl 
forms the initial data for the calculation pro- 
cedure. The accuracy of all the calculations is 
initially dependent upon the accuracy of the 
experimental measurements and the curve tit- 
ting. The only unknowns in the reduced equation 
system are v,, p, z, and zre These can now be 
evaluated at all points of the flowtield. 

Let P be a typical point with coordinates 
(z, r) and let P(i, j) (1 < i, j < 7) be mesh points 
of a small 7 x 7 rectangular grid surrounding 
P = P (4,4), obtained by taking small incre- 
ments 6z and 6r in the z and I directions. Thus 
the coordinates of P(i,J] are [z + (i - 4) 6z, 
r + (j - 4) Jr]. Since values of vZ and ve are 
easily obtained at any node P(i, j) (1 < i, j < 7), 
axial and radial derivatives of these are im- 
mediately calculable at the nodes 
P(4,j) (1 < j ,< 7) and P (i, 4) (1 G i G 7) re- 
spectively. The procedure for calculating v, p, z,, 
and r& successively at P is as follows :- 
(i) Equation (11) is integrated from r = 0 to 
r to calculate v, at P, with the boundary condi- 
tion v,,~=~ = 0. 
(ii) Equation (13) is integrated from r = cc to 
r to calculate p at the points P (i, 4) (1 < i < 7) 
with the boundary condition pi,, m = p,,,. Hence 
dpjaz is obtained at P. 
(iii) The values of all terms on the left hand 
sides of the two momenta equations (12) and 
(14) are calculated and values appropriate to 

g h,) and p (r’ze) 

at P are deduced. 
(iv) Integrating these values from r = 0 to r gives 
trz and zre at all radial points P at a given axial 
station z, with the boundary conditions 

z rs/r = 0 = 0 and ~~~~~~~ = 0. 

For all radial integration sweeps, N points P 
are used across the mixing layer, where N is 
quite large for increased accuracy. All derivatives 
are calculated by use of a three, five or seven 

point central difference formula and all integra- 
tions performed using Simpson’s rule over three 
points If experimental mean measurements of 
v, and/or p are available, step (i) and/or (ii) may 
be omitted. 

Thus the distribution of the rz- and r&corn- 
ponents (- px and - pa) of the Reynolds 
stress tensor t and the associated components 
of the effective viscosity are calculated, using 
the equations [from equations (5) and (6)] 

r I* = - PV, VZ I Z,@ = - p- 

T %I = Ker i(vslr). 

(15) 

(16) 

Any functions dependent on these can now be 
evaluated For example, mixing lengths l,, and 
Ifi and mixing length parameters A,, and )ile It 
is usual to take the viscosity proportional to the 
second invariant of the mean flow rate of 
deformation tensor [3, 91 and an isotropic 
Prandtl model is 

p = p12 WA. (17) 

For the nonisotropic model here the lengths 
and parameters are determined from equation 
(17) using 

(18) 

ke = bejr,., (19) 
Other generalizations of Prandtl’s hypothesis 
with different mixing lengths may be checked. 
For example 

RESULTS AND DISCUSSION 

The results presented and discussion refer 
to predictions made from experimental mean 
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data of Chigier and Chervinsky [lg], who 
conducted an experimental study of isothermal 
turbulent jets with degrees of swirl S from 0.0 
to 0.6. In [18] curves were fitted through the 
experimental points of time-mean velocities and 
pressure and a set of equations with empirical 
constants were given so that their variations with 
position and degree of swirl were readily 
calculable. 

Accuracy 
The values of all quantities calculated in this 

paper are directly dependent upon the accuracy 
of the experiments, the curve fitting and the 
calculation procedure. Accuracy checks were 
made with the calculation procedure by varying 
the size of grid and number of points N across 
the mixing layer. Since the calculation is a 
Simpson integration across the mixing layer, 
with ordinate values calculated each time from 
the experimental curves, decreasing the size of 
the grid and increasing N can increase almost 
without limit the accuracy of the calculation. 
It is considered that mesh parameters making 
the calculation procedure extremely accurate 
have been used and that sufficient care has been 
taken in the other procedures for all the con- 
clusions to be valid and the magnitude of cal- 
culated terms to have an accuracy of 10 per cent. 

Orders of magnitude of terms in momenta 
equations 
Each term in the momenta equations (12H14) 

has been calculated for four degrees of swirl. 
Calculation of the neglected inertia terms in 
equation (13) shows that this approximation 
to equation (9) is certainly valid, these terms 
being at least two orders of magnitude less than 
the retained ones. The relative order of magni- 
tude of terms in the swirl equation (14) was un- 
affected by the degree of swirl or axial position. 

The relative order of magnitude of terms in 
the axial equation (12) at z/d = 6 are shown in 
Fig. 1, where nondimensionalization has been 
effected by dividing each term by pu,(a/az)u, 
at 5 = 0. A comparison of the distributions at 

the four degrees of swirl shows that terms (1) 
and (2) do not vary as swirl increases. The 
main variation was the increase in the value of 
the pressure term (4) and this was balanced by 
a corresponding decrease in the shear stress 
term (3). At S = 0.6 the pressure term has 
become the same magnitude as the main con- 
vective term. 

Similar distributions have been obtained at 
other axial stations. Closer to the nozzle 
(z/d = 2) the pressure term becomes the most 
significant, but further downstream (beyond 
z/d = 15) the pressure term has almost vanished, 
even at S = 0.6. In order to show these varia- 
tions the maximum values of the terms for 
S = 0.6 are given in Table 1 below for three 
axial stations. This comparison shows the domi- 
nance of the pressure term in the initial region 
(z/d = 2) and its insignificance in the fully 
developed similarity region (z/d = 15). 

Table 1. Variation of signijcance of terms in axial equation 
(12) with axial distance. Maximum values at selected axial 

stations 

(2) 0.15 015 0.15 

(3) - 1.30 0.21 0.80 

dP 
a: (4) 2.30 0.79 O-20 

Turbulent shear stress and effective viscosity 
components 
(i) Initial region (z/d = 2). The shear stress 

terms have been normalized by division by 

P%102~ a constant value for all the jets considered. 
The variation of the two shear stress terms 7,; 
and zre are shown in Fig. 2. The rz-component 
is seen to increase progressively with swirl and 
in general is of larger magnitude than the 
rWomponent. 
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FIG. 1. Relative order of magnitude of terms in the axial momentum equation at z/d = 6. 
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FIG. 2. Radial distributions of normalized shear stress and effective viscosities in the initial region (z/d = 2). 
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I% 3. Radial distributions of normalized shear stress and effective viscosities in the fully developed region (z/d = 15). 
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FIG. 4. Radial distributions ofmixing length parameters, A,, and Rlc in the initial (z/d = 2) and fully developed region (z/d = 15). 
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The higher shear stress for higher degrees of 
swirl is associated with higher turbulence in- 
tensity and rate of entrainment for which the 
swirling jet is renowned. The comparison here 
shows clearly that the radial gradient of the 
axial velocity component ~%,jar is of greater 
significance in the production of shear stress 
than the swirl velocity gradient, despite these 
gradients being of similar magnitudes. The shear 
stress distributions also show that the region of 
maximum shear stress corresponds to the region 
of maximum radial gradients of axial velocity 
(&2/&). Thus in order to obtain good mixing, 
in a combustion system for example, fuel 
should be injected into these regions of maxi- 
mum velocity gradients, as found experimentally 
by Beer [14]. 

The effective viscosities have been normalized 
by division by p(z + a)~,,,, since in the fully 
developed region of a nonswirling jet it has been 
found that this normalization tends to a univer- 
sal constant. In the initial region the effective 
viscosity for nonswirling jets is generally small 
under the influence of the potential core. Figure 2 
shows effective viscosity components pL,, and 
pie in the initial region, verifying that as the 
degree of swirl increases, and the potential core 
region is reduced in size, the effective viscosity 
pIz increases. The prz values are in general higher 
than those for pLle and both can be seen to be 
neither isotropic nor uniform. 

(ii) Fully developed region (z/d = 15). The 
rz- and r&components of the turbulent shear 
stress and effective viscosity in the fully developed 
region are shown in Fig. 3. The r&components 
of shear stress have been reduced to such small 
magnitudes that they may be considered negli- 
gible in comparison to the rz-components. The 
predicted distribution of the rz-component of 
shear stress for a nonswirling jet agrees well 
with measurements in [19]. The trend with 
swirl for the rz-component of the stress tensor 
is now the reverse of that in the initial region 
(Fig. 2). This somewhat surprising result shows 
that in the fully developed region shear stresses 
are lower than in nonswirling jets. These results 

explain a phenomenon which has been noted 
in flames with swirl: that if fuel was not fully 
burned in the initial region considerable diff- 
culty was found in burning the fuel residue in 
the fully developed region of the flame. Measure- 
ments of turbulence characteristics in swirling 
jets by Allen [17] also show this increase in 
shear stress and turbulence intensity with swirl 
in the initial region and a decrease in the down- 
stream region. Thus, in order to utilize the 
increased rate of mixing in a swirling jet, mixing 
must take place in the region close to the nozzle 
exit. 

The effective viscosity components in the fully 
developed region also decrease with increase 
in the degree of swirl, but when normalized by 
division by p(z + a)~,,,, the normalized values 
generally increase with swirl, as in Fig. 3. The 
decay of u, is hyperbolic in the fully developed 
region and thus values shown in Fig. 3 for 
effective viscosities are valid for all axial stations 
in this region. The tendency of these normalized 
values to increase with swirl is because of the 
more rapid decay of u, in swirling jets. The distri- 
butions of Fig. 3 may be compared with those 
obtained by Hinze and Hegge Zi&en [12]. They 
found that, for a nonswirling jet in the fully 
developed region, 

had approximately a constant value of 0.002 
in the central zone (5 < 0.06) with a decrease 
as r increases. Effective viscosities in the r&plane 
are seen to be of similar magnitude to those in 
the rzplane, but the form of the distributions is 
different. It can thus be concluded again that 
effective viscosities are nonisotropic and non- 
uniform. 

Mixing length parameters 
Mixing length parameters calculated accord- 

ing to equations (18) and (19) are shown in 
Fig. 4 for the initial and fully developed regions. 
For nonswirling jets it has been found that good 
predictions of mean velocity distributions can 
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be made with the assumption that 1, is constant 
and equal to 00845, see [6]. An examination 
of Fig 4 shows that there is a variation of both 
A, and ArB with spatial position and degree of 
swirl. The spatial variations of I,= are seen to be 
greater for swirling than for qonswirling jets, 
but spatial variations of Jr0 are very small. 
The increase in rZ, towards the center shows that 
predictions using a constant mixing length 
predict too low an effective viscosity ,B, and 
hence a distribution of u/u,,, which is too pointed 
near 5 = 0. On the basis of the results shown 
in Fig. 4 it may be concluded that good pre- 
dictions can be made for weakly swirling jets 
with the assumption that I, and Jr0 are both 
equal to 0.1, whereas for higher degrees of swirl 
a smaller value ArB is appropriate. Thus, despite 
the effective viscosity being nonisotropic and 
nonuniform, a mixing length parameter distri- 
bution which is isotropic and uniform is quite 
feasible for weakly swirling jets, but is pro- 
gressively less valid as the degree of swirl 
increases. 

The distributions of mixing length parameters 
using equation (20) have also been obtained. 
For a given degree of swirl their spatial varia- 
tions are quite small and comparable with those 
calculated from equations (18) and (19). How- 
ever, their variations with swirl were found to.be 
quite large-the rz-component being similar 
to Fig 4 but the r&component being much 
larger and more variable with swirl. It may be 
concluded that equation (20) for the I distribu- 
tions is only satisfactory for low swirl and, even 
then, nonisotropic distribution must be allowed 
for. 

CONCLUSIONS 

Distributions of turbulent exchange coefti- 
cients P,~ and pfi have been determined from 
measured time-mean values of velocity in swirl- 
ing jets without recirculation. Effective viscosi- 
ties were found to be nonisotropic, nonuniform 
and dependent upon the degree of swirl. 

Calculation of the relative order of magnitude 
of terms in the axial momentum equation shows 

that for a swirling jet the pressure term becomes 
increasingly important as the degree of swirl 
increases. At a swirl number of 06 the pressure 
term is dominant. 

As the degree of swirl is increased in a jet, 
shear stress, turbulence intensity and rate of 
entrainment increase in the initial region of the 
jet. In the fully developed region (z/d = 15) 
shear stresses are lower than in nonswirling jets. 

It is shown that the assumption of an iso- 
tropic uniform mixing length parameter distri- 
bution is quite feasible for weak swirl but is 
progressively less valid as the degree of swirl 
increases. 

1. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

REFERENCES 

C. W. HIRT, Computer studies of time dependent turbu- 
lent flows, Los Alamos Scientific Laboratory Report 
No. LA-DC-9578, Los Alamos (1968). 
R. B. BIRD, W. E. STEWART and E. N. LIGHTFOOT, 
Transport Phenomena. Wiley, New York (1960). 
S. WHITAKER, Introduction to Fluid Mechanics. Prentice- 
Hall. Englewood Cliffs. N.J. (1968). 
D. B. SPALDING, Models of turbulent flow, Imperial 
College Department of Mechanical Enaineerina Report 
No. EF/TN/A/B, Imperial College, ‘iondon (1969). 
A. D. GOSMAN, W. M. PUN, A. K. RUNCHAL, D. B. 
SPALDING and M. W. WOLFSHTEIN, Heat and mass 
transfer in recirculating flows, Imperial College Depart- 
ment of Mechanical Engineering Report No. SF/R/3, 
Imperial College, London (1968). 
S. V. PATANKAR and D. B. SPALDING, A finite-difference 
procedure for solving the equations of the two-dimen- 
sional boundary layer, Znt. J. Heat Mass Transfer 10, 
1389-1411 (1967). 
S. J. KLINE, M. V. MORKOVIN, G. S~VRAN and D. J. 
COCKRELL, (eds.) Proceedings of Computation of Turbu- 
lent Boundary Layers-I%8 AFOSR-ZFP-Stanford 
Conference, Stanford University (1968). 
S.-I. Plu, Fluid Dynamics of Jets. Van Nostrand, New 
York (1954). 
L. G. LOITSYANSKII, Propagation of a rotating jet in an 
infinite space surrounded by the same liquid. Prikl. 
Mat. Mekh. 17. 3-16 (1953). (also Translated into 
English 1965 by Associated Technical Services, Glen 
Ridge. N.J.) 
M. G. HALL, The structure of concentrated vortex cores, 
Prog. Aeronaut. Sci. 7, 53-l 10 (1966). 
L. PRANDTL, Bericht iiber Untersuchungen zur ausge- 
bildeten Turbulenz, Zamm 5, 136 (1925). 
J. 0. HINZE and B. G. VAN DER HEGGE ZIJNEN, Transfer 
of heat and matter in the turbulent mixing zone of an 
axially symmetrical jet, Appf. Sci. Res. Al, 435461 
(1949). 
P. BRADSHAW, D. H. Frnuum and N. P. A~~ELL, Cal- 
culation of boundary layer development using the 



NONISOTROPIC TURBULENT STRESS DISTRIBUTION 585 

14. 

15. 

16. 

turbulence energy equation, J. Fluid Mech. 28.593616 17. 
(1967). 
J. M. BE& On the stability and combustion intensity 18. 
of pressure-jet oil flames, Combustion 37, 27-29 (1965). 
F. H. HARLOW and C. W. HIRT, Generalized transport 
theory of anisotropic turbulence, Los Alamos Scientific 19. 
Laboratory Report No. LA-4086, Los Alamos (1969). 
I. S. GARTSHORE, Some numerical solutions of the 
viscous core of an irrotational vortex, National Research 
Council of Canada Aeronautical Report No. LR-378, 
Ottawa, Canada (1963). 

R. A. ALLEN, Ph.D. Thesis, Department of Fuel Tech. 
and Chem Engng, Sheffield, England (1971). 
N. A. C&ICIER and A. CHBRVINSKY, Experimental in- 
vestigation of swirling vortex motion in jets, J. Appl. 
Mech. 34,443451 (1967). 
I. WYGNAN~KI and H. E. FIEDLER, Some measurements 
in the self preserving jet, Boeing Scientific Laboratories 
Document No. Dl-82-0712. Boeing, Seattle, Wash. 
(1968). 

DISTRIBUTION DE CONTRAINTE TURBULENTE NON ISOTROPE DANS DES 
BC~ULEME~ITS TOURBILLONNAIRES A PARTIR DE LA DISTRIBUTION DES 

VALEURS MOYENNES. 

R&mmi&Gn peut faire la prediction de vitesse et de pression moyennes temporelles dans des Ccoulements 
turbulents isothermes si le tenseur de contrainte turbulente r est sp&cifie. On a generalement suppose la 
turbulence. isotrope dans le passe avec I’tquation constitutive e = 2~4 ou p est une viscosite effective et 
Aest le tenseur de vitesse de deformation moyenne. On pr6sente ici une methode qui permet auxdistributions 
de H,. et p,+, les deux composantes de viscositt effective dans un tcoulement tourbillonnaire sans recircula- 
tion, d’i%re dbterminees a partir des valeurs moyennes de u, et ug, les vitesses moyennes axiales et tan- 
gentielles. Les calculs montrent que la distribution de contrainte turbulente est non isotrope et que p+ 
et p+ sont fonctions du degrt de tourbillonnement et de la position dans le champ d’ecoulement. On montre 
que l’hypothbe d’une distribution isotrope uniforme du parametre longueur de melange est tout il fait 
utihsable pour un tourbillon faible mais est progressivement moins valide quand l’intensite du tourbillon 

augmente. 

NICHTISOTROPE TURBULENTE SPANNUNGSVERTEILUNG IN EINER 
WIRBELSTRGMUNG AUS EINER MITTLEREN WERTEVERTEILUNG 

Zusnmmenfaaaung-Man kann die mittlere Geschwindigkeit und den mittleren Druck tiber der Zeit in 
isothermen turbulenten Striimungen voraussagen, wenn der turbulente Spannungstensor r bestimmt ist 
Bisher wurde allgemein isotrope Turbulenz angenommen mit der Bistimmungsgleichung r = 2~4 wobei 
p die effektive Viskositat bedeutet und A den mittleren Deformationstensor. Es wird hier eine Methode 
gebracht, die es erlaubt, die Verteilungen p,. und p& aus einer mittleren Werteverteilung u, und ug zu 
bestimmen, p,. und /ld sind zwei kennzeichnende Komponenten der effektiven Viskositat in einer nicht 
rtlcklaufigen Wirbelstr6mungundu;unduediemittlerenAxial-und Wirbelgeschwindigkeiten Berechnungen 
zeigen, dass die turbulente Spannungsverteilung nicht isotrop ist und dass p,, und p,@ Funktionen des 
Grades der Verwirbelung und deren Lage im Strbmungsfeld sind Es wird gezeigt, dass die Annahme 
einer isotropen gleichformigen die Langenparameter mischenden Verteilung sehr brauchbar fur schwache 

Verwirbelung ist, jedoch immer mehr an Gtlltigkeit verliert, wenn der Verwirbelungsgrad steigt. 

PACIIPEAEJIEHBE HEB30TPOIIHOPO TYPBYJIEHTHOI’O HAIIPfDREHMFI 
B 3AKPY=IEHHbIX IIOTOKAX HA OCHOBAHMI? OCPEflHEHHbIX 

XAPAKTEPWCTBK 

AHHoTaqHJI-PacYeT CpeAHHx no BpeMeHH CKOpOCTA II AaBJIeHHfl B H30TepMHYeCKHX 
Typ6yJIyHTHhtX nOTOKaX B03MOHCeH npH yCJIOBHH, eC.IH ollpe~e.IIeH TeH30p Typ6yneHTHOrO 
HanpRHteHHFI T. 06b14~0 Typ6y.3 HTHOCTb CYHTaJIaCb 1130TpOnHofi H TeHBOp Typ6yneHTHOrO 
HanpnHo.?HHn OnpeAenRnCR n0 ypaBHeHHPJ T = ~/LA, rA7e ~-@@eKTHBHaR BH3KOCTb, a 
A-TeHaop CKOpOCTH @@OpManHH OCpenHeHHOrO TeYeHHR. E CTaTbe npeACTaBneH MeTOn, 
KOTOpbIti nO3BOAHeT H&iTH’ paCnpeReneHKFl nByX BaHtHbtX KOMnOHeHTOB 3~~eKTHBHO~ 
BR3KOCTH /+E H /.+s B HepenHpKyJHTnHOHHOM 3aKpyHeHHOM nOTOKe A3 paCnpeneJIeHHn CpenHHx 
aHaseHHi OceBoi II OKpyHCHOi CKOpOCTeti. vz EI vs. PacreTbt nOKaabIBaH)T, YTO pacnpeAeneHHe 
Typ6yneHTHOrO HanpR?KeHHH RBnReTCH HeR30TpOnHhIM II =tTO f~rz II /.~,s eCTb I$YHKJJHH 
cTeneHH 3aKpyTKH II nonoHteHHn B none TeHeHHH. IIoKa3aH0, KTo nonymeHHe 06 H30TpOnHOM 
OAHO~OAHOM pacnpeAeneHRH napaMeTpa AnH~br CMemeHMncnpaBe~nHBO~na cna6otI cTeneHH 

3aKpyTKW, OAHaKO npHMeHHMOCT6 era CHHH(aeTCH C yBenHYeHHeM CTeneHH 3aKpyTKH. 


